从 01 开始 从 01 开始
首页
  • 📚 计算机基础

    • 计算机简史
    • 数字电路
    • 计算机组成原理
    • 操作系统
    • Linux
    • 计算机网络
    • 数据库
    • 编程工具
    • 装机
  • 🎨 前端

    • Node
  • JavaSE
  • Java 高级
  • JavaEE

    • 构建、依赖管理
    • Ant
    • Maven
    • 日志框架
    • Junit
    • JDBC
    • XML-JSON
  • JavaWeb

    • 服务器软件
    • 环境管理和配置管理-科普篇
    • Servlet
  • Spring

    • Spring基础
  • 主流框架

    • Redis
    • Mybatis
    • Lucene
    • Elasticsearch
    • RabbitMQ
    • MyCat
    • Lombok
  • SpringMVC

    • SpringMVC 基础
  • SpringBoot

    • SpringBoot 基础
  • Windows 使用技巧
  • 手机相关技巧
  • 最全面的输入法教程
  • 最全面的浏览器教程
  • Office
  • 图片类工具
  • 效率类工具
  • 最全面的 RSS 教程
  • 码字工具
  • 各大平台
  • 校招
  • 五险一金
  • 职场规划
  • 关于离职
  • 杂谈
  • 自媒体
  • 📖 读书

    • 读书工具
    • 走进科学
  • 🌍 英语

    • 从零开始学英语
    • 英语兔的相关视频
    • Larry 想做技术大佬的相关视频
  • 🏛️ 政治

    • 反腐
    • GFW
    • 404 内容
    • 审查与自我审查
    • 互联网
    • 战争
    • 读书笔记
  • 💰 经济

    • 关于税
    • 理财
  • 💪 健身

    • 睡眠
    • 皮肤
    • 口腔健康
    • 学会呼吸
    • 健身日志
  • 🏠 其他

    • 驾驶技能
    • 租房与买房
    • 厨艺
  • 电影

    • 电影推荐
  • 电视剧
  • 漫画

    • 漫画软件
    • 漫画推荐
  • 游戏

    • Steam
    • 三国杀
    • 求生之路
  • 小说
  • 关于本站
  • 关于博主
  • 打赏
  • 网站动态
  • 友人帐
  • 从零开始搭建博客
  • 搭建邮件服务器
  • 本站分享
  • 🌈 生活

    • 2022
    • 2023
    • 2024
    • 2025
  • 📇 文章索引

    • 文章分类
    • 文章归档

晓林

程序猿,自由职业者,博主,英语爱好者,健身达人
首页
  • 📚 计算机基础

    • 计算机简史
    • 数字电路
    • 计算机组成原理
    • 操作系统
    • Linux
    • 计算机网络
    • 数据库
    • 编程工具
    • 装机
  • 🎨 前端

    • Node
  • JavaSE
  • Java 高级
  • JavaEE

    • 构建、依赖管理
    • Ant
    • Maven
    • 日志框架
    • Junit
    • JDBC
    • XML-JSON
  • JavaWeb

    • 服务器软件
    • 环境管理和配置管理-科普篇
    • Servlet
  • Spring

    • Spring基础
  • 主流框架

    • Redis
    • Mybatis
    • Lucene
    • Elasticsearch
    • RabbitMQ
    • MyCat
    • Lombok
  • SpringMVC

    • SpringMVC 基础
  • SpringBoot

    • SpringBoot 基础
  • Windows 使用技巧
  • 手机相关技巧
  • 最全面的输入法教程
  • 最全面的浏览器教程
  • Office
  • 图片类工具
  • 效率类工具
  • 最全面的 RSS 教程
  • 码字工具
  • 各大平台
  • 校招
  • 五险一金
  • 职场规划
  • 关于离职
  • 杂谈
  • 自媒体
  • 📖 读书

    • 读书工具
    • 走进科学
  • 🌍 英语

    • 从零开始学英语
    • 英语兔的相关视频
    • Larry 想做技术大佬的相关视频
  • 🏛️ 政治

    • 反腐
    • GFW
    • 404 内容
    • 审查与自我审查
    • 互联网
    • 战争
    • 读书笔记
  • 💰 经济

    • 关于税
    • 理财
  • 💪 健身

    • 睡眠
    • 皮肤
    • 口腔健康
    • 学会呼吸
    • 健身日志
  • 🏠 其他

    • 驾驶技能
    • 租房与买房
    • 厨艺
  • 电影

    • 电影推荐
  • 电视剧
  • 漫画

    • 漫画软件
    • 漫画推荐
  • 游戏

    • Steam
    • 三国杀
    • 求生之路
  • 小说
  • 关于本站
  • 关于博主
  • 打赏
  • 网站动态
  • 友人帐
  • 从零开始搭建博客
  • 搭建邮件服务器
  • 本站分享
  • 🌈 生活

    • 2022
    • 2023
    • 2024
    • 2025
  • 📇 文章索引

    • 文章分类
    • 文章归档
  • 计算机简史

    • 课程介绍
    • 手动计算时代
    • 机械式计算机时代
    • 机电时代

    • 电子时代

    • 未来时代
      • 光学计算
      • 量子计算
      • 最后
    • 如何通俗地解释停机问题(Halting Problem)? - 知乎
  • 数字电路

  • 计算机组成原理

  • 操作系统

  • Linux

  • 计算机网络

  • 数据库

  • 编程工具

  • 装机

  • 计算机基础
  • 计算机简史
2022-11-13
目录

未来时代

# 05.未来时代

未来计算机会是什么样呢? ‍ ‍

# 光学计算

世界上速度最快的就是光,尽管电的传播速度也接近光速,但光还是凭借许多压倒性的优势不断吸引着计算机科学家们的注意力:

  1. 电路布线时,为避免短路和电磁干扰,必须确保线路间的相互隔离,多条光波却可以直接交叉而互不影响,既可简化布线,又可缩短线程。同时,电路导线上的能耗是不容忽视的,而光没有这个烦恼,更不会产生多余的热量。
  2. 单个电回路要么处于接通状态,要么处于断开状态,即同一时刻只能表达一个信号,而不同频率的光波却可以在同一光路中和谐共处,单束光又可以分成性质相同的多束,这是一种天生的并行计算能力。
  3. 电信号通过半导体逻辑门需要若干皮秒( 1012 秒),这已经很快了,但实验证明,光信号通过光学逻辑门只需若干飞秒( 1015 秒),比前者快了 3 个数量级。
  4. 相比电路只能靠通断状态(或者说相对的高低电压)来表示 1 和 0,光有着更丰富、灵活的工具,比如频率(或波长)、相位、传播方向和偏振方向等。 ‍ 如何控制光?除了折射率,强光其实还能改变吸收率、透射率等介质的许多其他光学参数,对这些光与介质相互作用的研究统称为非线性光学。这门学科自激光诞生以来已经有了长足的发展,为光学逻辑门在理论上做足了准备。进入 21 世纪后,先后有韩国、新加坡、美国、中国、印度等多个国家成功研制了基于各种非线性效应的光学逻辑门。

和为电子计算机带来繁荣的半导体一样,光学计算机的发展关键也在材料,要找到一种同时满足低功耗、低光损、低成本、高速度、高集成度等条件的材料并不容易,商业化的光学计算机还有很长的路要走。 ‍

# 量子计算

量子最早由德国物理学家马克斯·普朗克(Max Planck)在 1900 年解释黑体辐射时提出,他大胆假设,就像物质是由一个个原子组成的一样,能量也由一种最基本的能量子(即量子)组成。 也就是说,能量不是连续的,是一份一份的。在我们走路时,跨出一步的距离可以是 60 厘米,也可以是 59 厘米,或者 59.9 厘米,乃至 59.999999 厘米,只要有把控手段,任意厘米都可以,因此步长是连续的;而当我们遇到楼梯,却必须一个台阶、一个台阶地走,没有办法走半个或三分之一个台阶,如果把整个楼梯看做能量,那么台阶就是组成它的量子。

1905 年,爱因斯坦指出,光也是由一个个不可再分的光量子(即光子)组成的。科学家们意识到,量子化是微观世界的普遍现象。

而量子的发现,远不止将我们心目中连续的世界打成离散那么简单,它还提示我们,世界是概率的,是不确定的。比如电子和光子的波粒二象性,在有些情况下它们是波,在有些情况下它们又是粒子,而这两种身份都是人类观察的结果,在观察前,它们既是波,又是粒子,处于两者的叠加态。导致量子从叠加态坍缩至确定态的观察过程称为测量。

量子叠加也是普遍现象,我们可以借助著名的思想实验“薛定谔的猫”去理解它。把一只猫和一瓶致命的毒气一起关在一个封闭的盒子里,一个由原子衰变控制的机关可以将毒气瓶打碎。由于原子处于既衰变又没衰变的叠加态,因此毒气瓶也处于既破碎又完好的叠加态,此时,我们得到了一只即死又活的猫。而世界好像有意想隐藏这种真相,当我们打开盒子(进行测量),总会以一定的概率看到死猫或活猫。

我们永远无法亲眼目睹神奇的量子叠加,只能尽量去想象这种状态。不过这并不影响我们发挥它的价值,量子系统的两种状态本身就可以用来表示二进制信息,而它们叠加之后更是出现了非凡的效果。在传统二进制计算机中,一个比特位(bit)可以表示 0 或者 1,而处于叠加态的量子比特(qubit/qbit)却可以同时表示 0 和 1,而一旦被测量,它就会以一定的概率坍缩为 0 或 1。

不论多少位的传统比特,都只能用于表示 1 个二进制数,比如 4 个比特可以表示 0000~1111 中的某一个。而量子比特就不同了,4 个量子比特可以同时表示 0000~1111,共 16 个数,10 个量子比特可以表示 1024 个数,n 个量子比特可以表示 2n 个数。这种指数级的增长有着极其恐怖的威力,比如,仅当我们拥有 266 个量子比特时,就可以为可观测宇宙中的所有原子一一编号,而这在传统计算机中需要 333 万亿亿亿亿亿亿亿 TB 的容量!

但目前这些还处于理论阶段,具体如何使用量子以及和量子有关的算法,还待商榷。

# 最后

希望通过本专栏,能让你对计算机历史有基本的认知,让你在接下来的计算机学习中能够知其然,更知其所以然。

上次更新: 2025/5/5 17:15:09
MOS管
如何通俗地解释停机问题(Halting Problem)? - 知乎

← MOS管 如何通俗地解释停机问题(Halting Problem)? - 知乎→

最近更新
01
学点统计学:轻松识破一本正经的胡说八道
06-05
02
2025 年 5 月记
05-31
03
《贫穷的本质》很棒,但可能不适合你
05-27
更多文章>
Theme by Vdoing | Copyright © 2022-2025 | 粤 ICP 备 2022067627 号 -1 | 粤公网安备 44011302003646 号 | 点击查看十年之约
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式